263 research outputs found

    Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2

    Get PDF
    OBJECTIVE: Subfield-specific measurements provide superior information in the early stages of neurodegenerative diseases compared to global hippocampal measurements. The overall goal was to systematically compare the performance of five representative manual and automated T1 and T2 based subfield labeling techniques in a sub-set of the ADNI2 population. METHODS: The high resolution T2 weighted hippocampal images (T2-HighRes) and the corresponding T1 images from 106 ADNI2 subjects (41 controls, 57 MCI, 8 AD) were processed as follows. A. T1-based: 1. Freesurfer + Large-Diffeomorphic-Metric-Mapping in combination with shape analysis. 2. FreeSurfer 5.1 subfields using in-vivo atlas. B. T2-HighRes: 1. Model-based subfield segmentation using ex-vivo atlas (FreeSurfer 6.0). 2. T2-based automated multi-atlas segmentation combined with similarity-weighted voting (ASHS). 3. Manual subfield parcellation. Multiple regression analyses were used to calculate effect sizes (ES) for group, amyloid positivity in controls, and associations with cognitive/memory performance for each approach. RESULTS: Subfield volumetry was better than whole hippocampal volumetry for the detection of the mild atrophy differences between controls and MCI (ES: 0.27 vs 0.11). T2-HighRes approaches outperformed T1 approaches for the detection of early stage atrophy (ES: 0.27 vs.0.10), amyloid positivity (ES: 0.11 vs 0.04), and cognitive associations (ES: 0.22 vs 0.19). CONCLUSIONS: T2-HighRes subfield approaches outperformed whole hippocampus and T1 subfield approaches. None of the different T2-HghRes methods tested had a clear advantage over the other methods. Each has strengths and weaknesses that need to be taken into account when deciding which one to use to get the best results from subfield volumetry

    Spinocerebellar Ataxia Type 23: A Genetic Update

    Get PDF
    The spinocerebellar ataxia type 23 locus was identified in 2004 based on linkage analysis in a large, two-generation Dutch family. The age of onset ranged 43–56 years and the phenotype was characterized by a slowly progressive, isolated ataxia. Neuropathological examination revealed neuronal loss in the Purkinje cell layer, dentate nuclei, and inferior olives. Ubiquitin-positive intranuclear inclusions were found in nigral neurons, but were considered to be Marinesco bodies. The disease locus on chromosome 20p13-12.3 was found to span a region of approximately 6 Mb of genomic DNA, containing 97 known or predicted genes. To date, no other families have been described that also map to this SCA locus. Direct sequencing of the coding regions of 21 prioritized candidate genes did not reveal any disease-causing mutation. Apparently, the SCA23 gene is a disease gene with a different function than the genes that have been associated with other known SCA types. Work to elucidate the chromosomal organization of the SCA23 locus will eventually discover the responsible disease gene

    Asymmetric Image-Template Registration

    Get PDF
    Authors Manuscript received: 2010 May 4. 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part IA natural requirement in pairwise image registration is that the resulting deformation is independent of the order of the images. This constraint is typically achieved via a symmetric cost function and has been shown to reduce the effects of local optima. Consequently, symmetric registration has been successfully applied to pairwise image registration as well as the spatial alignment of individual images with a template. However, recent work has shown that the relationship between an image and a template is fundamentally asymmetric. In this paper, we develop a method that reconciles the practical advantages of symmetric registration with the asymmetric nature of image-template registration by adding a simple correction factor to the symmetric cost function. We instantiate our model within a log-domain diffeomorphic registration framework. Our experiments show exploiting the asymmetry in image-template registration improves alignment in the image coordinates.NAMIC (NIH NIBIB NAMIC U54-EB005149)NAC (NIH NCRR NAC P41- RR13218)mBIRN (NIH NCRR mBIRN U24-RR021382)NIH NINDS (R01-NS051826 Grant)National Science Foundation (U.S.) (CAREER Grant 0642971)NIBIB (R01 EB001550)NIBIB (R01EB006758)NCRR (R01 RR16594-01A1)NCRR (P41-RR14075)NINDS (R01 NS052585-01)Singapore. Agency for Science, Technology and Researc

    A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    Get PDF
    AbstractAutomated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy)

    Microbial catabolic activities are naturally selected by metabolic energy harvest rate

    Get PDF
    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate

    Critical slowing down as early warning for the onset and termination of depression

    Get PDF
    About 17% of humanity goes through an episode of major depression at some point in their lifetime. Despite the enormous societal costs of this incapacitating disorder, it is largely unknown how the likelihood of falling into a depressive episode can be assessed. Here, we show for a large group of healthy individuals and patients that the probability of an upcoming shift between a depressed and a normal state is related to elevated temporal autocorrelation, variance, and correlation between emotions in fluctuations of autorecorded emotions. These are indicators of the general phenomenon of critical slowing down, which is expected to occur when a system approaches a tipping point. Our results support the hypothesis that mood may have alternative stable states separated by tipping points, and suggest an approach for assessing the likelihood of transitions into and out of depression

    Flexible network reconstruction from relational databases with Cytoscape and CytoSQL

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular interaction networks can be efficiently studied using network visualization software such as Cytoscape. The relevant nodes, edges and their attributes can be imported in Cytoscape in various file formats, or directly from external databases through specialized third party plugins. However, molecular data are often stored in relational databases with their own specific structure, for which dedicated plugins do not exist. Therefore, a more generic solution is presented.</p> <p>Results</p> <p>A new Cytoscape plugin 'CytoSQL' is developed to connect Cytoscape to any relational database. It allows to launch SQL ('Structured Query Language') queries from within Cytoscape, with the option to inject node or edge features of an existing network as SQL arguments, and to convert the retrieved data to Cytoscape network components. Supported by a set of case studies we demonstrate the flexibility and the power of the CytoSQL plugin in converting specific data subsets into meaningful network representations.</p> <p>Conclusions</p> <p>CytoSQL offers a unified approach to let Cytoscape interact with relational databases. Thanks to the power of the SQL syntax, this tool can rapidly generate and enrich networks according to very complex criteria. The plugin is available at <url>http://www.ptools.ua.ac.be/CytoSQL</url>.</p
    • …
    corecore